
Dr. Lucas Polo da Fonseca
Investigador principal (PI)
Lucas Polo da Fonseca iniciou sua carreira como pesquisador do Instituto de Química da UNICAMP em 01 de Agosto de 2025, onde fundou o Laboratório de Polímeros Funcionais (LPF), grupo de pesquisa em que lidera pesquisas em polimerização em etapas com controle de arquitetura e dispersidade, polímeros sustentáveis e circulares, e sistemas poliméricos anfifílicos.
O LPF busca transformar policondensações e poliadições clássicas em rotas de polimerização controladas (Đ < 1,5), habilitando a produção de copolímeros em bloco, sequenciamento e topologias definidas, para estas classes de polímeros antes pensadas como sendo inerentemente descontroladas em termos de massa molar, arquitetura, e funcionalidade terminal.
Mais informações
O LPF visa desenvolver materiais reprocessáveis/recicláveis e adesivos reversíveis de alto desempenho; integrando avaliação de ciclo de vida (LCA) que certifique a verdadeira sustentabilidade dos processos e materiais desenvolvidos, em comparação aos atualmente utilizados. Entre os eixos estratégicos, destacam-se o projeto CARBON — uso de bicarbonatos como geradores in-situ de CO₂ para acessar poliuretanas, poliureias e policarbonatos sem fosgênio/isocianatos, com foco em rotas de baixo impacto e potencial pegada de carbono negativa — e o projetoa CIRCLE, que combina controle de polimerização em etapas com ligações covalentes dinâmicas para unir desempenho, circularidade e escalonamento.
Natural de Campinas (SP/Brasil), formou-se e fez doutorado direto em Química no Instituto de Química da Universidade Estadual de Campinas (UNICAMP), com ênfase em polímeros. Realizou dois pós-doutorados na Espanha onde foi bolsista Marie Skłodowska-Curie (POLYMAT/UPV-EHU) em polímeros sustentáveis sob orientação do Prof. Haritz Sardon, com foco em rotas de polimerização alternativas, e correlação estrutura-propriedade de materiais poliméricos utilizando de técnicas de caracterização avançadas (SAXS/WAXS, microscopia).
Ao longo de sua trajetória, foi contemplado com bolsas competitivas em diferentes estágios, incluindo bolsa de Iniciação Científica da FAPESP, bolsa de pós-graduação CAPES e bolsa de Pós-Doutorado Marie Skłodowska-Curie Actions (MSCA). Atua como revisor ad hoc de periódicos da área de polímeros e materiais, e colabora com grupos acadêmicos e industriais ao redor do mundo. Além disso, o LPF mantém forte agenda de ciência aberta, responsável e ética, valorizando a diversidade e formação humana em todos os âmbitos.
Publicações
Utilize os filtros e o campo de busca abaixo para selecionar suas publicações de interesse
Fonseca, Lucas Polo; Hamzehlou, Shaghayegh; Garagarza, Olaia; Mantione, Daniele; Lamas, Aritz; de Pariza, Xabier Lopez; Elizalde, Fermin; Campins, Marta Ximenis; Agirre, Amaia; Perli, Gabriel; Sardon, Haritz
Enhancing the Self‐Assembly of Step‐Growth Polymers by Narrowing Their Molar Mass Distribution: A Dynamic Bond‐Mediated Approach Journal Article
Em: Angewandte Chemie, vol. 137, não 39, 2025, ISSN: 1521-3757.
Resumo | Links | BibTeX | Tags:
@article{PoloFonseca2025,
title = {Enhancing the Self‐Assembly of Step‐Growth Polymers by Narrowing Their Molar Mass Distribution: A Dynamic Bond‐Mediated Approach},
author = {Lucas Polo Fonseca and Shaghayegh Hamzehlou and Olaia Garagarza and Daniele Mantione and Aritz Lamas and Xabier Lopez de Pariza and Fermin Elizalde and Marta Ximenis Campins and Amaia Agirre and Gabriel Perli and Haritz Sardon},
doi = {10.1002/ange.202509710},
issn = {1521-3757},
year = {2025},
date = {2025-09-22},
journal = {Angewandte Chemie},
volume = {137},
number = {39},
publisher = {Wiley},
abstract = {Abstract Step‐growth polymerization (SGP) typically produces polymers with exceptional versatility in terms of applications, but its inherently uncontrolled nature leads to broad molecular weight distributions (Đ ) and consequently polymers with poor nanostructure control in comparison to chain growth polymers. In this study, we provide a solution to this long‐lasting problem by introducing a new concept, asymmetric dynamic bond mediated polymerization (ADBP). In this case, the polymerization between asymmetric and reversibly deactivated AA’‐type dielectrophiles and B2 ‐type dinucleophiles has a preferential reaction pathway between the functionality A’ of the asymmetric AA’ monomer with B2 . We observe that this polymerization allows us to achieve better control of the step‐growth process where in the first stage only well‐defined trimers and dimers are primarily formed up to conversion (p ) ≤ 0.6, followed by their polymerization stage (p ≥ 0.6). This leads to polymers with reduced Đ (<1.5), in comparison to traditional SGP, and improved molar mass control. Such technique is further exploited to prepare polyurethanes with Đ = 1.2, which exhibit the ability to form microphase‐separated domains with higher ordering, giving rise to polyurethane thermosets with superior mechanical properties compared to a traditional SGP analog. },
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Prasad, Akshaya Maria; Perli, Gabriel; Ximenis, Marta; Tejero, Ainara; Mugica, Agurtzane; Fonseca, Lucas Polo; Sangroniz, Ainara; Vidal, Fernando; Sardon, Haritz
Lab safety alert: a real case of isocyanate exposure Journal Article
Em: Polym. Chem., vol. 16, não 25, pp. 2905–2909, 2025, ISSN: 1759-9962.
Resumo | Links | BibTeX | Tags:
@article{Prasad2025,
title = {Lab safety alert: a real case of isocyanate exposure},
author = {Akshaya Maria Prasad and Gabriel Perli and Marta Ximenis and Ainara Tejero and Agurtzane Mugica and Lucas Polo Fonseca and Ainara Sangroniz and Fernando Vidal and Haritz Sardon},
doi = {10.1039/d5py90051d},
issn = {1759-9962},
year = {2025},
date = {2025-06-24},
journal = {Polym. Chem.},
volume = {16},
number = {25},
pages = {2905--2909},
publisher = {Royal Society of Chemistry (RSC)},
abstract = {A real-world laboratory accident highlights underestimated dermal risks posed by reactive isocyanates. First-aid actions and essential safety insights are shared to reinforce best laboratory safety practices. },
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Lamas, Aritz; Fonseca, Lucas Polo; Moussard, Cécile; de Morais Zanata, Daniela; Perli, Gabriel; Ximenis, Marta; de Pariza, Xabier Lopez; Seychal, Guillem; Caliari, Marco; Itxaso, Miren; Aguirresarobe, Robert; Calvo, Iñigo; Sardon, Haritz
Exploiting the Base‐Triggered Thiol/Vinyl Ether Addition to Prepare Well‐Defined Microphase Separated Thermo‐Switchable Adhesives Journal Article
Em: Adv Funct Materials, vol. 35, não 2, 2025, ISSN: 1616-3028.
Resumo | Links | BibTeX | Tags:
@article{Lamas2024,
title = {Exploiting the Base‐Triggered Thiol/Vinyl Ether Addition to Prepare Well‐Defined Microphase Separated Thermo‐Switchable Adhesives},
author = {Aritz Lamas and Lucas Polo Fonseca and Cécile Moussard and Daniela de Morais Zanata and Gabriel Perli and Marta Ximenis and Xabier Lopez de Pariza and Guillem Seychal and Marco Caliari and Miren Itxaso and Robert Aguirresarobe and Iñigo Calvo and Haritz Sardon},
doi = {10.1002/adfm.202412584},
issn = {1616-3028},
year = {2025},
date = {2025-01-00},
journal = {Adv Funct Materials},
volume = {35},
number = {2},
publisher = {Wiley},
abstract = {Abstract Switchable adhesives are materials of utmost importance due to their capability of having their adhesion/cohesion properties reversibly triggered upon stimuli, allowing on‐demand surface attaching/detaching. Still, several challenges mainly associated with complex uncontrolled chemical processes hinders their production. In this study, it is found that unexpectedly vinyl ethers are able to react with thiols in the presence of a catalytic concentration of base, which allows the preparation of well‐defined phase‐separated switchable adhesives. Indeed, these findings show that base‐catalyzed thiol‐acrylate and thiol‐vinyl ether are highly orthogonal, making the acrylate reaction faster. This is explored to react in the first stage thiols with acrylates in the presence of vinyl ethers to end‐cap all the oligomers with stable vinyl ethers and suppress undesirable disulfide formation. In a second stage the UV‐triggered thiol‐ene “click reaction” is carried out, forming the network. It is shown that the network prepared by this approach presents superior adhesion due to greater backbone length, a controlled crosslinking motif, and better‐defined microphase separation. Additionally, the adhesives made by this strategy are thermo‐switchable due to the temperature‐triggered base‐catalyzed thioether dynamic covalent character at 200 °C. Despite providing superior adhesive properties, the proposed technology endows scalable, thermo‐switchable, and O2 ‐resistant adhesives with huge industrialization potential. },
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Fonseca, Lucas Polo; Sardon, Haritz
‘Click’ Chemistry in Polyurethanes: From Design to Applications Book Chapter
Em: Click Chemistry in Polymer Science, pp. 248–279, Royal Society of Chemistry, 2024, ISBN: 9781839169892.
Resumo | Links | BibTeX | Tags:
@inbook{Fonseca2024,
title = {‘Click’ Chemistry in Polyurethanes: From Design to Applications},
author = {Lucas Polo Fonseca and Haritz Sardon},
doi = {10.1039/9781839169885-00248},
isbn = {9781839169892},
year = {2024},
date = {2024-11-01},
booktitle = {Click Chemistry in Polymer Science},
pages = {248--279},
publisher = {Royal Society of Chemistry},
abstract = {Polyurethanes (PU) are one of the most commercially relevant classes of polymers with a vast range of applications ranging from biomedicine to high-performance structural materials. This is mainly due to the wide variety of precursors (polyisocyanates and polyols) that can be used for PU synthesis, associated with the high density of intra/intermolecular hydrogen bonding, and microphase separated morphology. Over the past two decades, the versatility and functionality of PU were increased even further by the development of the ‘click chemistry’ concept and several ‘click’ reactions, together with their association with PU chemistry. Therefore, this book chapter covers fundamental concepts associated with ‘click chemistry’ and polyurethanes, going from the concepts of polyurethanes, ‘click’ chemistry and ‘click’ reactions, to strategies employed for the design and production of ‘clickable’ PU, to the applications of click chemistry in PU. },
keywords = {},
pubstate = {published},
tppubtype = {inbook}
}
Matxinandiarena, Eider; Peñas, Mario Iván; Curole, Brennan J.; Król, Monika; Fonseca, Lucas Polo; Ruokolainen, Janne; Grayson, Scott M.; Sangroniz, Leire; Müller, Alejandro J.
Em: Macromolecules, vol. 57, não 10, pp. 4906–4917, 2024, ISSN: 1520-5835.
@article{Matxinandiarena2024,
title = {Crystallization-Induced Self-Assembly of Poly(ethylene glycol) Side Chains in Dithiol–yne-Based Comb Polymers: Side Chain Spacing and Molecular Weight Effects},
author = {Eider Matxinandiarena and Mario Iván Peñas and Brennan J. Curole and Monika Król and Lucas Polo Fonseca and Janne Ruokolainen and Scott M. Grayson and Leire Sangroniz and Alejandro J. Müller},
doi = {10.1021/acs.macromol.4c00527},
issn = {1520-5835},
year = {2024},
date = {2024-05-28},
journal = {Macromolecules},
volume = {57},
number = {10},
pages = {4906--4917},
publisher = {American Chemical Society (ACS)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
